
STA 712 Homework 1

Due: Tuesday, September 6, 12:00pm (noon) on Canvas.

Instructions: Submit your work as a single PDF. For this assignment, you may include written
work by scanning it and incorporating it into the PDF. Include all R code needed to reproduce
your results in your submission.

Probability and inference review questions

The purpose of these questions is to review some key concepts which will be useful in STA 712.

1. The Gamma distribution for random variable Y has probability density function

f(y) =
1

Γ(k)θk
yk−1e−

y
θ

where k > 0 is the shape parameter, θ > 0 is the scale parameter, and

Γ(k) =

∫ ∞
0

xk−1e−xdx

is the Gamma function evaluated at k.

(a) In R, make a single plot showing the pdf of the Gamma distribution for a few differ-
ent combinations of k and θ. Be sure to add a legend to your plot, use different line
types/colors, and make everything legible.

(b) Derive E(Y ) = kθ.

(c) Derive V ar(Y ) = kθ2.

(d) Suppose Y1, ..., Yn are independent, identically distributed Gamma(k = 1/2, θ = 2) ran-
dom variables. What distribution does

∑
Yi follow? Prove the result using moment

generating functions. What is the expected value and variance of this distribution?

2. Suppose Y1, ..., Yn are an i.i.d. sample drawn from a Bernoulli(p) distribution.

(a) Derive the maximum likelihood estimate of p, observed information J (p), and the Fisher
information I(p).

(b) Make three separate plots in R showing the likelihood function L(p), the log-likelihood
function `(p), and the score function U(p) for p ∈ (0, 1). Do this for two cases: n = 10
and

∑
yi = 8, and n = 100 and

∑
yi = 80. Compute the MLE, J (p), and I(p) for both

cases.
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Fisher scoring problems

In class, we learned how to use Fisher scoring to fit a logistic regression model. Recall that the
Fisher scoring algorithm estimates the parameters β of a model as follows:

• Start with an initial guess β(0)

• Update the estimate: β(r+1) = β(r) + I−1(β(r))U(β(r))

• Stop when β(r+1) ≈ β(r)

The purpose of these questions is to practice with Fisher scoring.

3. In class, we derived the score U(β) and the information matrix I(β) for logistic regression in
the case of a single explanatory variable. What happens when we have multiple explanatory
variables?

Suppose that

Yi ∼ Bernoulli(pi)

log

(
pi

1− pi

)
= β0 + β1Xi,1 + · · ·+ βkXi,k

We can write the systematic component more concisely as log

(
pi

1− pi

)
= βTXi, where

β = (β0, β1, ..., βk)
T and Xi = (1, Xi,1, ..., Xi,k)

T are k + 1-dimensional vectors.

(a) Show that U(β) =
n∑
i=1

(
Yi −

eβ
TXi

1 + eβTXi

)
Xi

(b) Show that I(β) =
n∑
i=1

eβ
TXi

(1 + eβTXi)2
XiX

T
i

Hints: There are a couple different ways to approach this problem. It is probably cleanest
to use rules for matrix calculus; that is, what it means to take derivatives when vectors and
matrices are involved.

Remember that U(β) =
∂`(β)

∂β
and J (β) = −∂U(β)

∂β
, where `(β) is the log-likelihood.

Rules for matrix calculus can be found in the Matrix Cookbook https://www.math.uwaterloo.

ca/~hwolkowi/matrixcookbook.pdf and in Wikipedia’s article on matrix calculus https:

//en.wikipedia.org/wiki/Matrix_calculus. The following rules are particularly helpful:

• If x is a vector, g(x) ∈ R, and f : R→ R, then
∂f(g(x))

∂x
= f ′(g(x))

∂g(x)

∂x

• If x and a are both vectors, then
∂xTa

∂x
= a

• If x and a are both vectors, and g(x) ∈ R, then
∂g(x)a

∂x
=

(
∂g(x)

∂x

)
aT
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4. In this problem, we will work with the dengue data we discussed in class. A CSV containing
the data can be downloaded in R by running

dengue <- read.csv("https://sta712-f22.github.io/homework/dengue.csv")

For this problem, we are interested in modeling the relationship between platelet count and
dengue fever. Let PLTi denote the platelet count of patient i, and Yi denote their dengue
status (0 = negative, 1 = positive). Our logistic regression model is

Yi ∼ Bernoulli(pi)

log

(
pi

1− pi

)
= β0 + β1PLTi

(a) Fit this logistic regression model in R, and report the estimated coefficients β̂0 and β̂1.

(b) In R, write a function U which calculates U(β) using the dengue data. For example, if
β = (1.8, 0)T then your function should produce the following:

U(c(1.8, 0))

[1] -3211.612 -820195.802

(c) In R, write a function I which calculates I(β) using the dengue data. For example, if
β = (1.8, 0)T then your function should produce the following:

> I(c(1.8, 0))

[,1] [,2]

[1,] 696.2918 161214.3

[2,] 161214.2603 41783775.1

(d) Suppose that we use Fisher scoring to estimate β, and our current estimate is β(r) =
(1.8, 0)T . Calculate the updated estimate β(r+1).

(e) Use your code from (b) and (c) to write code which implements Fisher scoring until
convergence, beginning with β(0) = (1.8, 0)T . For the purpose of this question, stop
when

max{|β(r+1)
0 − β(r)0 |, |β

(r+1)
1 − β(r)1 |} < 0.0001

Does your final estimate match the estimated coefficients in (a)? How many scoring
iterations did it take to converge?

(f) Modify your code from (e) to implement gradient ascent instead of Fisher scoring. Use a
learning rate (step size) of γ = 0.0000001, begin with β(0) = (1.8, 0)T , and run for 5000
iterations (do not run until convergence!). Report the estimated coefficients after 5000
steps. Why do you think Fisher scoring performs better here than gradient ascent?
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