
STA 712 Homework 2

Due: Thursday, September 15, 12:00pm (noon) on Canvas.

Instructions: Submit your work as a single PDF. For this assignment, you may include written
work by scanning it and incorporating it into the PDF. Include all R code needed to reproduce
your results in your submission.

MLE review

1. If Y ∼ Poisson(λ), then

P (Y = k) =
e−λλk

k!
,

where λ > 0 and k = 0, 1, 2, ... . Suppose we observe Y1, ..., Yn
iid∼ Poisson(λ).

(a) Derive the maximum likelihood estimate of λ.

(b) Derive the observed information J (λ) and the Fisher information I(λ).

(c) Let λ̂ be the maximum likelihood estimate of λ. Show that V ar(λ̂) = λ/n. How does
this relate to the Fisher information I(λ)?

Sneak peek: Poisson regression

2. So far, we have worked with logistic regression models for a binary response. Later in the
course, we will work with other types of response variables, like a Poisson response. This
question will give you a preview of Poisson regression, while giving you practice with Fisher
scoring.

Suppose that we have the Poisson regression model

Yi ∼ Poisson(λi)

log(λi) = β0 + β1Xi,1 + · · ·+ βkXi,k,

and we observe data (X1, Y1), ..., (Xn, Yn), where Xi = (1, Xi,1, ..., Xi,k)
T ∈ Rk+1. (Since

λ > 0 for a Poisson variable, log(λ) ∈ (−∞,∞), which makes it reasonable for log(λi) to be
a linear function of the Xs).

(a) Let β = (β0, ..., βk)
T , Y = (Y1, ..., Yn)T , λ = (exp{βTX1}, ..., exp{βTXn})T , and X ∈

Rn×(k+1) the design matrix with rows XT
i . Show that

U(β) = XT (Y − λ).

(b) Let W = diag(λ1, ..., λn), where λi = exp{βTXi}. Show that

I(β) = XTWX.

(c) In R, simulate n = 500 observations (X1, Y1), ..., (Xn, Yn). Draw Xi,1
iid∼ N(0, 1), and

Yi ∼ Poisson(λi), where log(λi) = −2 + 2Xi,1.
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(d) Using your simulated data from part (c), fit a Poisson regression model of Y on X, and
report the fitted model coefficients. To fit a Poisson regression model in R:

glm(y ~ x, family = poisson)

(e) Modify your code from HW1, Question 4 to implement Fisher scoring for Poisson re-
gression with the simulated data. Begin with β(0) = (0, 0)T , and stop when

max{|β(r+1)
0 − β(r)0 |, |β

(r+1)
1 − β(r)1 |} < 0.0001

Does your final estimate match the estimated coefficients in (d)? How many scoring
iterations did it take to converge?

(Randomized) quantile residuals

3. In class, we talked about (randomized) quantile residuals as a method of assessing the shape
assumption in logistic regression. To formally define quantile residuals, we will follow the
textbook (Section 8.3.4.2).

Suppose we have a logistic regression model:

Yi ∼ Bernoulli(pi)

log

(
pi

1− pi

)
= β0 + β1Xi,1 + · · ·+ βkXi,k.

We observe data (X1, Y1), ..., (Xn, Yn) and fit the model, producing coefficient estimates β̂
which give estimated probabilities p̂i. The (randomized) quantile residual rQ,i for the ith
observation is defined by

rQ,i = Φ−1(u), u ∼

{
Uniform(1− p̂i, 1) Yi = 1

Uniform(0, 1− p̂i) Yi = 0,

where Φ is the standard normal CDF.

(a) Show that if p̂i = pi (our estimated probability is correct), then rQ,i ∼ N(0, 1). Hint:
treat the response Yi as a random variable, and note that Yi ∼ Bernoulli(p̂i) if pi = p̂i.

(b) Show that E[rQ,i] > 0 when p̂i < pi, and E[rQ,i] < 0 when p̂i > pi.

(c) Write your own function in R to compute randomized quantile residuals for a binary
logistic regression model. (Your function may not call the qresid function from the
statmod package).

(d) Using code from the class activity on September 2, generate data for which the logistic
regression shape assumption is satisfied. Then create a quantile residual plot using
your R function, and show that the residuals rQ,i are randomly scattered around the
horizontal line at 0.

(e) Using code from the class activity on September 2, generate data for which the logistic
regression shape assumption is not satisfied. Then create a quantile residual plot using
your R function, and show that the plot shows a violation of the shape assumption.
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