STA 712 Homework 2

Due: Thursday, September 15, 12:00pm (noon) on Canvas.

Instructions: Submit your work as a single PDF. For this assignment, you may include written
work by scanning it and incorporating it into the PDF. Include all R code needed to reproduce
your results in your submission.

MLE review
1. If Y ~ Poisson()), then
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where A >0 and £ =0,1,2,... . Suppose we observe Y7, ..., Y}, id Poisson(\).

(a) Derive the maximum likelihood estimate of \.
(b) Derive the observed information J(A) and the Fisher information Z(\).

(c) Let X be the maximum likelihood estimate of A. Show that Var(X) = A/n. How does
this relate to the Fisher information Z(\)?

Sneak peek: Poisson regression

2. So far, we have worked with logistic regression models for a binary response. Later in the
course, we will work with other types of response variables, like a Poisson response. This
question will give you a preview of Poisson regression, while giving you practice with Fisher
scoring.

Suppose that we have the Poisson regression model

Y; ~ Poisson()\;)
log(Ai) = Bo + B1Xi1 + -+ + BeXik,

and we observe data (X1,Y1),...,(Xy,Yy), where X; = (1, X;1,..., X; )T € RFFL (Since
A > 0 for a Poisson variable, log(\) € (—o0, 00), which makes it reasonable for log()\;) to be
a linear function of the Xs).

(a) Let B = (Bo, )", Y = (Y1,..., V)T, A = (exp{B" X1}, ..., exp{B" X, })T, and X €
R +1) the design matrix with rows X!. Show that

U@ =X"(Y - ).
(b) Let W = diag(\1, ..., A), where \; = exp{87 X;}. Show that
I(8) = XTWX.
iid

(c) In R, simulate n = 500 observations (X1,Y1),...,(Xp,Ys). Draw X;; ~ N(0,1), and
Y; ~ Poisson(\;), where log(\;) = —2 +2X; 1.



(d) Using your simulated data from part (c), fit a Poisson regression model of ¥ on X, and
report the fitted model coefficients. To fit a Poisson regression model in R:

glm(y ~ x, family = poisson)

(e) Modify your code from HW1, Question 4 to implement Fisher scoring for Poisson re-
gression with the simulated data. Begin with 3(©) = (0,0)”, and stop when

1 r+1 T
max{|8 — 571, 187 — 571} < 0.0001
Does your final estimate match the estimated coefficients in (d)? How many scoring
iterations did it take to converge?
(Randomized) quantile residuals

3. In class, we talked about (randomized) quantile residuals as a method of assessing the shape
assumption in logistic regression. To formally define quantile residuals, we will follow the
textbook (Section 8.3.4.2).

Suppose we have a logistic regression model:
Y; ~ Bernoulli(p;)

log (1 flp) =00+ i1 Xi1+ -+ BpXi.

We observe data (X1,Y1), ..., (Xp,Ys) and fit the model, producing coefficient estimates B
which give estimated probabilities p;. The (randomized) quantile residual r¢q; for the ith
observation is defined by

Uniform(1 —p;,1) Yi=1
u ~Y

Uniform(0,1—p;) Y;=0,
where ® is the standard normal CDF.

(a) Show that if p; = p; (our estimated probability is correct), then rg; ~ N(0,1). Hint:
treat the response Y; as a random variable, and note that Y; ~ Bernoulli(p;) if p; = pi.

(b) Show that E[rg ;] > 0 when p; < p;, and E[rg ;] < 0 when p; > p;.

(c) Write your own function in R to compute randomized quantile residuals for a binary
logistic regression model. (Your function may not call the qresid function from the
statmod package).

(d) Using code from the class activity on September 2, generate data for which the logistic
regression shape assumption is satisfied. Then create a quantile residual plot using
your R function, and show that the residuals rg; are randomly scattered around the
horizontal line at 0.

(e) Using code from the class activity on September 2, generate data for which the logistic
regression shape assumption is not satisfied. Then create a quantile residual plot using
your R function, and show that the plot shows a violation of the shape assumption.



