
STA 712 Homework 7

Due: Friday, December 2, 12:00pm (noon) on Canvas.

Instructions: Submit your work as a single PDF. For this assignment, you may include written
work by scanning it and incorporating it into the PDF. Include all R code needed to reproduce
your results in your submission.

The EM algorithm

In this problem, we will use the EM algorithm to estimate the parameters in a mixture of two
univariate Gaussian distributions.

Let θ ∈ Rd be an unknown parameter we want to estimate. Let Y = Y1, ..., Yn be a set of observed
data, and Z = Z1, ..., Zn a set of unobserved latent data. To estimate θ, we want to maximize the
likelihood

L(θ;Y ) = fY (Y |θ) =

∫
fY |Z=z(Y |θ)fZ(z)dz

However, maximizing this likelihood is challenging when Z is unobserved. Our solution is to
alternate between the E and M steps of the EM algorithm:

E step: Let θ(k) be the current estimate of θ. Calculate

Q(θ|θ(k)) = EZ|Y,θ(k) [logL(θ;Z, Y )]

M step: θ(k+1) = argmaxθ Q(θ|θ(k))

1. Let Zi ∼ Bernoulli(α), and Yi|(Zi = j) ∼ N(µj , σ
2
j ). Then our parameter vector of interest

is θ = (α, µ0, µ1, σ
2
0, σ

2
1), and the conditional density of Yi|Zi = j is

fYi|Zi=j(y|θ) =
1√

2πσ2j

exp

{
− 1

2σ2j
(y − µj)2

}
.

We observe data Y1, ..., Yn, and our goal is to estimate θ. We will use the EM algorithm to
estimate these parameters.

(a) Show that the complete-data likelihood (i.e., if we were able to observe Zi) is

L(θ;Z, Y ) =
n∏
i=1

αZi(1− α)1−Zi
1√

2πσ2Zi

exp

{
− 1

2σ2Zi

(Yi − µZi)
2

}

(b) Using (a), show that

Q(θ|θ(k)) =

n∑
i=1

1∑
j=0

[logαj −
1

2
log(2πσ2j )−

1

2σ2j
(Yi − µj)2]P (Zi = j|Yi, θ(k)),

where α1 = α and α0 = 1− α.
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(c) Differentiate Q(θ|θ(k)) with respect to µj to show that

µ
(k+1)
j =

n∑
i=1

YiP (Zi = j|Yi, θ(k))
n∑
i=1

P (Zi = j|Yi, θ(k))

(d) Calculate similar update rules for σ2j and αj .

(e) Now let’s try it out! Generate Y1, ..., Y1000 from a mixture of two univariate Gaussians,

with α = 0.3, µ0 = 0, µ1 = 4, and σ20 = σ21 = 1. Beginning with α(0) = 0.5, µ
(0)
0 = 0,

µ
(1)
1 = 1, and σ

2(0)
0 = σ

2(0)
1 = 0.5, run 100 iterations of the EM algorithm. What are

your estimated parameters at the end?

Fisher information for ZIP models

Recall that for a ZIP model,

P (Yi = y|γ, β) =

e
−λi(1− αi) + αi y = 0

e−λiλyi
y!

(1− αi) y > 0

with

log

(
αi

1− αi

)
= γTXi

log(λi) = βTXi

2. Suppose we observe data (X1, Y1), ..., (Xn, Yn) and fit a ZIP model, estimating γ and β. One
option for testing hypotheses about coefficients in γ and β is to use a Wald test. This relies on
the fact that the distribution of (γ̂, β̂)T is approximately normal, and requires us to calculate
the observed information. In this probably, we will calculate the observed information matrix
for the ZIP model.

(a) Show that the log likelihood of γ and β is

`(γ, β;Y ) =
∑
i:Yi=0

log
(
e−λi(1− αi) + αi

)
+
∑
i:Yi>0

(Yi log λi − λi) +
∑
i:Yi>0

log(1− αi)−
∑
i:Yi>0

log(Yi!)

(b) Rearrange (a) to show that

`(γ, β;Y ) =

n∑
i=1

log(exp{−eβTXi}+ exp{γTXi})1{Yi = 0}+

n∑
i=1

(Yiβ
TXi − exp{βTXi})1{Yi > 0}

−
n∑
i=1

log(1 + exp{γTXi})−
∑
i:Yi>0

log(Yi!)
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(c) The score function is

U(γ, β) =


∂`

∂γ

∂`

∂β

 ,

where both
∂`

∂γ
and

∂`

∂β
are vectors. Find

∂`

∂γ
and

∂`

∂β
.

(d) The observed information matrix is

J (γ, β) = −


∂2`

∂γ2
∂2`

∂γ∂β

∂2`

∂β∂γ

∂2`

∂β2


where each entry is itself a matrix. Calculate J (γ, β).

Multivariate EDMs

Recall that a multivariate EDM has probability function

f(y; θ, φ) = a(y, φ) exp

{
yT θ − κ(θ)

φ

}
,

where φ > 0, θ, y ∈ Rd, and κ : Rd → R. As in a univariate EDM,

∂κ

∂θ
= µ

∂µ

∂θ
= V (µ),

with µ = E[Y ] ∈ Rd and V (µ) = 1
φV ar(Y ) ∈ Rd×d.

3. Suppose that Y ∼ Categorical(π1, ..., πJ). Then µ = (π1, ..., πJ−1)
T ,

θ =

(
log

(
π1

1−
∑J−1

j=1 πj

)
, ..., log

(
πJ−1

1−
∑J−1

j=1 πj

))
, and κ(θ) = − log

(
1−

J−1∑
j=1

πj

)
.

(a) By differentiating κ, confirm that
∂κ

∂θ
= µ for the categorical distribution.

(b) For the categorical distribution, show that

V (µ) =


π1(1− π1) −π1π2 · · · −π1πJ−1
−π2π1 π2(1− π2) · · · −π2πJ−1

...
...

. . .
...

−πJ−1π1 −πJ−1π2 · · · πJ−1(1− πJ−1)


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