STA 712 Homework 7

Due: Friday, December 2, 12:00pm (noon) on Canvas.
Instructions: Submit your work as a single PDF. For this assignment, you may include written

work by scanning it and incorporating it into the PDF. Include all R code needed to reproduce
your results in your submission.

The EM algorithm

In this problem, we will use the EM algorithm to estimate the parameters in a mixture of two
univariate Gaussian distributions.

Let # € R? be an unknown parameter we want to estimate. Let Y = Y7, ..., Y}, be a set of observed
data, and Z = 71, ..., Z,, a set of unobserved latent data. To estimate 0, we want to maximize the
likelihood

LO:Y) = fy(Y]6) = / Friz—s(Y10)f2(2)dz

However, maximizing this likelihood is challenging when Z is unobserved. Our solution is to
alternate between the E and M steps of the EM algorithm:

E step: Let 6) be the current estimate of 6. Calculate

QO10™) = Eyy g log L(0; Z,Y)]

M step: %+D = argmax, Q(0|6™)

1. Let Z; ~ Bernoulli( ), and Y;|(Z; = j) ~ N(pj,0 ) Then our parameter vector of interest
is 6 = (a, po, 11,05,0%), and the conditional denmty of ;| Z; =jis

1 1 )
fyiiz,=i(yl0) = - exp{—%?(y—uj) }

We observe data Y7, ...,Y,, and our goal is to estimate . We will use the EM algorithm to
estimate these parameters.

(a) Show that the complete-data likelihood (i.e., if we were able to observe Z;) is

1 1
L(6;Z,Y) || Zi = oxpd——(Yi— pz)?
a = exp{ 202.( i — 1z;) }

27T0'Zi Z;

(b) Using (a), show that

1 )
Q61" Zzlog%_,log@m) 5oz (Vi = 1P (Zi = j{Yi,0®),
i=1 =0 ]

where oy = a and ag =1 — .



(c) Differentiate Q(0|0*)) with respect to u; to show that

> YiP(Z; = j|Yi,6%)

(d) Calculate similar update rules for O'JZ- and «;.

(e) Now let’s try it out! Generate Y7, ..., Yigoo from a mixture of two univariate Gaussians,

with o = 0.3, y1p = 0, py = 4, and 02 = 0? = 1. Beginning with o(® = 0.5, u{”) =0,

,ugl) =1, and 03(0) = 0'%(0) = 0.5, run 100 iterations of the EM algorithm. What are
your estimated parameters at the end?

Fisher information for ZIP models

Recall that for a ZIP model,
P(Y; =yly,B) = e NN

with

s (1 - > =7

log(\i) = BT X;

2. Suppose we observe data (X1, Y1), ..., (Xn, Yn) and fit a ZIP model, estimating v and 5. One
option for testing hypotheses about coefficients in v and 3 is to use a Wald test. This relies on

~

the fact that the distribution of (7, B)T is approximately normal, and requires us to calculate
the observed information. In this probably, we will calculate the observed information matrix
for the ZIP model.

(a) Show that the log likelihood of v and f is

Uy, B5Y) = 3 dog (M1 =) +ai) + Y (Vilogh = A)+ Y log(l—ai) = > log(Vi!)

1:Y;=0 1:Y;>0 1:Y; >0 1:Y;>0

(b) Rearrange (a) to show that

(7, 8:Y) = 3 log(exp{—e” ¥} + exp{y" X )1{Y; = 0} + > (Vi"X; — exp{” X;:})1{¥; > 0}
i=1 =1

— > log(1+exp{y"X;}) — Y log(¥3!)

i=1 :Y; >0



(c) The score function is

ot
oy
ot
ap

Uy, 8) =

where both % and % are vectors. Find a— and %

oy o8 oy 9B

(d) The observed information matrix is

020 9%
02 070
T, B)=— 7 9P
e o
By B2

where each entry is itself a matrix. Calculate J (v, 3).

Multivariate EDMs
Recall that a multivariate EDM has probability function

Y7o ; K(6) } |

where ¢ > 0, 6,y € R%, and s : R — R. As in a univariate EDM,

F(4:6.6) = aly, §) exp {

oK ou
90 K 20 V(w),
with g = E[Y] € R and V(u) = gVar(Y) € R

3. Suppose that Y ~ Categorical(ry, ..., 7). Then p = (my,...,75-1)7,

m Ty_1 J-1
= (log| ——— |, . log| —2L )|, and k(6) = —log [1— 3 =, |.
( (z) (z)) i ( P )

Ok _
20
(b) For the categorical distribution, show that

(a) By differentiating , confirm that u for the categorical distribution.

T (1 —mp) —T1T2 —TTj—1
—Tom1 mo(l —mg) .- —TMoTj_1
V() =
—myjam —my_me o wy—1(l—7my_q)



