
STA 712 Challenge Assignment 4: Deriving Variance Inflation Factors

Due: Wednesday, October 12, 12:00pm (noon) on Canvas.

Instructions:

• Submit your work as a single PDF. For this assignment, you may include written work by
scanning it and incorporating it into the PDF.

• You are welcome to work with others on this assignment, but you must submit your own
work.

• You can probably find the answers to many of these questions online. It is ok to use online
resources! But make sure to show all your work in your final submission.

Variance Inflation Factors

In class, we introduced variance inflation factors as a method for diagnosing multicollinearity. In
class, we said that the variance inflation factor V IFj for the coefficient β̂j is given by

V IFj =
1

1−R2
j

,

where R2
j is the coefficient of determination for the linear regression of the jth explanatory variable

on the other explanatory variables. The goal of this challenge assignment is to derive this variance
inflation factor.

1. Before we can derive the variance inflation factor, we need to derive some properties of the
coefficient of determination R2.

Ignore logistic regression for now, and suppose we have the linear regression model

Y = Xβ + ε,

where X ∈ Rn×(k+1) is the design matrix and ε ∼ N(0, σ2I). The coefficient of determination
R2 for the regression of Y on X is given by

R2 = 1− SSE

SSTotal
= 1−

∑
i(Yi − Ŷi)2∑
i(Yi − Y )2

.

For the purposes of this question, assume that Y = 0 (this will make our math easier).

(a) Let H = X(XTX)−1XT be the hat matrix for this linear regression. Show that

SSE = Y T (I −H)Y.

(b) Let H0 = 1(1T1)T1T , where 1 ∈ Rn is the vector of all 1s. Show that

SSTotal = Y T (1−H0)Y.

(That is, the total sum of squares is just the residual sum of squares when we regress on
a constant).
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(c) Using (a) and (b), and the assumption that Y = 0, show that

R2 =
Y TXβ̂

Y TY
.

(d) Now suppose we have the weighted linear regression model

Y = Xβ + ε, ε ∼ N(0,W−1),

where W = diag(w1, ..., wn) is a diagonal matrix of weights. As we discussed in class,
we can express this model as unweighted linear regression

Yw = Xwβ + εw, ε ∼ N(0, I),

by transforming: Yw = W
1
2Y , Xw = W

1
2X, and εw = W

1
2 ε. Assume that Y w is

centered so that Y w =
∑n

j=1w
1
2
j Yj = 0 (note that centering Yw does not change the

estimated coefficients, except for the intercept β0, which we usually don’t care about).
Use (c) to show that the coefficient of determination for the weighted least squares model
is

R2 =
Y TWXβ̂

Y TWY
.

2. In this question, we will derive variance inflation factors for logistic regression.

We will work with the logistic regression model

Yi ∼ Bernoulli(pi)

log

(
pi

1− pi

)
= β0 + β1Xi,1 + · · ·+ βkXi,k.

Let xi = (X1,i, X2,i, ..., Xn,i)
T ∈ Rn denote the vector of observed responses for the ith

explanatory variable. Then, the design matrix for our logistic regression model can be written

X = [1 x1 x2 · · · xk] ∈ Rn×(k+1),

where 1 ∈ Rn is the vector of all 1s.

Letting β = (β0, β1, ..., βk)T ∈ Rk+1, recall from class that

V ar(β̂) = (XTWX)−1,

where W is the diagonal weight matrix with diagonal entries wi = pi(1− pi).
For the purposes of this problem, assume that the columns xi have been centered so that
n∑

j=1
w

1
2
j Xj,i = 0. This centering does not impact the correlation between the columns, and

therefore does not impact the variance inflation factors, but it makes some of our math easier.

At several points in this problem, it will be helpful to use the following fact about inverting
block matrices. Let

M =

[
A B
C D

]
be a block matrix with A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p, and D ∈ Rq×q. Assuming that A
and D are invertible, then

M−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
.
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(a) We will begin by finding an expression for V ar(β̂1) (the argument is analogous for the
other β̂j). First, note that the ordering of the columns ofX doesn’t change our estimated

regression coefficients, just the order in which they appear in the vector β̂. Since we
want to focus on β̂1, let X∗ be the reordered columns of X, with

X∗ = [x1 X
∗
(1)],

where X∗
(1) = [1 x2 · · · xk]. Show that

(X∗)TWX∗ =

[
xT
1Wx1 xT

1WX∗
(1)

(X∗
(1))

TWx1 (X∗
(1))

TWX∗
(1)

]
.

Conclude that

V ar(β̂1) = (xT
1Wx1 − xT

1WX∗
(1)((X

∗
(1))

TWX∗
(1))

−1(X∗
(1))

TWx1)
−1.

(b) Now consider a weighted least squares regression of x1 on the other k − 1 explanatory
variables x2, ...,xk, with weights W . That is, we model

x1 = X∗
(1)γ + ε

= γ11 + γ2x2 + γ3x3 + · · ·+ γkxk + ε,

with ε ∼ N(0,W−1). Use the derivation of the weighted least squares coefficient esti-
mates from class to show that

γ̂ = ((X∗
(1))

TWX∗
(1))

−1(X∗
(1))

TWx1,

and therefore
V ar(β̂1) = (xT

1Wx1 − xT
1WX∗

(1)γ̂)−1.

(c) Now we want to simplify this variance somewhat. Using the results from part (b) and
Question 1(d), show that

V ar(β̂1) =
1

(1−R2
1)xT

1Wx1
,

where R2
1 is the coefficient of determination for the weighted least squares regression of

x1 on X∗
(1), with weights W .

(d) Now we need to determine what V ar(β̂1) would be if x1 were the only explanatory

variable in the model. First, re-center x1 so that
n∑

j=1
wjXj,1 = 0. Then suppose our

model is

log

(
pi

1− pi

)
= β0 + β1Xi,1.

(Note that re-centering x1 does not change the slope β1). Show that

[1 x1]
TW [1 x1] =

 n∑
i=1

wi 0

0 xT
1Wx1

 .
Conclude that if x1 is our only explanatory variable in the model, then V ar(β̂1) =
(xT

1Wx1)
−1.

(e) By comparing (c) and (d), show that when other explanatory variables x2, ...,xk are

added to the model, the variance of β̂1 increases by a factor
1

1−R2
1

.
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