STA 712 Challenge Assignment 5: Logistic regression in Python

Due: Wednesday, October 26, 12:00pm (noon) on Canvas.

Instructions:

e Submit your work as a single typed PDF (you should not need to type much, if any, math on
this assignment).

e You are welcome to work with others on this assignment, but you must submit your own
work.

e You can probably find the answers to many of these questions online. It is ok to use online
resources! And using online documentation and examples is a very important part of coding.

R vs. Python for statistics and data science

Our language of choice in this class has been R, which is a common and popular choice for fitting
and working with statistical models. R is particularly good for many core statistical tools: there
is excellent support for linear models (and variants like weighted regression and robust regression),
GLMs, GAMs, mixed effects models, etc. Through tidyverse packages like tidyr, dplyr, and
ggplot, R is also a good choice for data cleaning, manipulation, and visualization.

Python is another language which is becoming increasingly popular for data science and machine
learning. The scikit-learn module contains a wide variety of tools for fitting prediction models
like regressions, support vector machines, and random forests. An advantage of scikit-learn is
that all models have a similar structure: you can fit them using the .£fit () function, you can get
predicted probabilities with the .predict_proba() function, etc.

Whether you use R or Python (or SAS, or SPSS, or Stata, etc.) ultimately depends on a combination
of personal preferences and the task at hand. The purpose of this challenge assignment is to
introduce you to fitting models in Python. Do we need Python to fit logistic regression? No — R is
pretty great at this. But it is valuable to see how Python works (and how it behaves differently to
R). In the process, you will also see the general procedure for fitting a model using scikit-learn,
and you will be briefly introduced to other important Python modules like numpy, pandas, and

scipy.

Set up

To complete this challenge assignment, you will need to install Python on your computer. If you
do not already have Python installed (or even if you do!) I recommend installing the Anaconda
distribution (https://www.anaconda.com/products/distribution). You will also need to install
the following modules:

e pandas
e numpy
e scikit-learn

e scipy



e matplotlib

e statsmodels

If you install Anaconda, all of these except statsmodels should already be included. To install
statsmodels, see the instructions at https://www.statsmodels.org/stable/install.html.

Once Python is installed, how do you use it? If you have the latest versions of R and RStudio
installed, you can actually use Python in RStudio! RStudio supports Quarto documents (these
are one of the options when you create a new document in RStudio), which behave similarly
to RMarkdown documents. In a Quarto document you can include chunks of Python code; see
https://quarto.org/docs/computations/python.html to get started.

Logistic regression in Python

In the following questions, we will replicate parts of the analysis on the SBA data from HW 4,
Question 3. Note: I have provided some scaffolded questions here to guide your analysis, but you
may still need to research how to actually do some of these steps. FE.g., “how to create a new
column in pandas”.

1.

At the beginning of your document (e.g., in a Python chunk at the top of your Quarto file),
import all the required modules.

. Load the SBA data into Python, using the pandas.read_csv function.
. List the variables in the SBA data that you used to answer the research questions in HW 4.

. Using the MIS_Status column, create a new column in your SBA data called Default, which

is equal to 1 if the loan was charged off (i.e., the borrower defaulted), and 0 if the loan was
paid in full (the borrower did not default).

. Create a new column in your SBA data called Amount which is the transformed loan amount.

Use whichever transformation (e.g., log) you used in HW 4 to fix the shape assumption.

. In R, categorical variables automatically get converted to indicator variables when we fit a lo-

gistic regression model. This is not true in Python; part of our data pre-processing is to create

the indicator variables we need. This can be done with the sklearn.preprocessing.OneHotEncoder
class. Create a new dataset called sba_encoded which contains your Amount column from
Question 5, and one-hot encodings of UrbanRural and NewExist. (For the purposes of this
activity, we will ignore any potential interactions between the explanatory variables). Hint:

you will probably want to use drop = ‘first’ in your one-hot encoding!

Using the sklearn.linear_model.LogisticRegression class, the Default column from
Question 4, and the sba_encoded data from Question 6, fit a logistic regression model and
report the estimated coefficients. Hint: you will want to use penalty = ‘none’ when creating
the model.

. Do the estimated coefficients from Question 7 agree with the estimated coefficients for the

same model in R? How do your estimated coefficients change when you change the solver
in your logistic regression?

. Using the sklearn.metrics.log_loss function, calculate the deviance for your logistic re-

gression model in Python, and compare to the deviance reported by R.



10.

11.

12.

13.

14.

Using your fitted model in Python, perform a hypothesis test to address the first research
question from HW 4: Is there a relationship between loan amount and the probability the
business defaults on the loan, after accounting for whether or not the business is new, and
whether it is in an urban or rural environment?

As you can see from the previous questions, the scikit-learn module is very good for
building and assessing prediction models, but is less useful for doing statistical inference. For
example, we don’t get a nice summary table for our model with estimated standard errors,
we need to calculate deviance separately, etc.

One way to get these nice summaries in Python is with the statsmodels module. Using the
statsmodels.GLM class, fit the same logistic regression model as above. Use the .summary ()
function to report a nice table with the estimated coefficients and standard errors. Hint:
make sure to add an intercept column to the sba_encoded data. The statsmodels module
does not include an intercept for you.

Explain why the standard errors for the NewExist and Intercept coeflicients are so high.
How would we fix that issue?

Finally, let’s try some regression diagnostics. Python has less support for logistic regression
diagnostics than R, so we will have to write functions for these diagnostics ourselves. For
simplicity, we’ll just focus on making a quantile residual plot.

Write a function to generate quantile residuals for your fitted model in Question 7. You
should be able to adapt your code from HW 2; use numpy . random.uniform to sample from a
uniform distribution, and scipy.stats.norm.ppf for the inverse CDF of a standard normal.

Using your function from Question 13, create a quantile residual plot for Amount. The
matplotlib.pyplot.scatter function will be useful for creating a scatterplot in Python.



