Quasi-Poisson models

Recap: Quasi-Poisson regression

A model for overdispersed Poisson-like counts, using an estimated dispersion parameter $\widehat{\phi}$, is called a *quasi-Poisson* model.

Recap: Poisson vs. quasi-Poisson

Poisson:

```
##
               Estimate Std. Error z value Pr(>|z|)
               -1.30445
                           0.12403 - 10.517
##
   (Intercept)
                                            < 2e-16 ***
  regionMW
                0.09754
                           0.17752
                                     0.549
                                            0.58270
  regionNE
            0.76268
                           0.15292 4.987 6.12e-07
## regionSE
                0.87237
                           0.15313
                                     5.697 1.22e-08 ***
Quasi-Poisson:
               Estimate Std. Error (t value) (r(>|t|
##
                                    -3.818 \ 0.000274
   (Intercept)
               -1.30445
                           0.34161
  regionMW
            0.09754
                           0.48893
                                     0.199 0.842417
## regionNE
                0.76268
                           0.42117
                                     1.811 0.074167 .
```

Quasi-likelihood models

Poisson: V(w) = w Var(Yi) = MiQuasi-Poisson: V(w) = w Var(Yi) = Qmi

Pros and cons of quasi-Poisson

Pros:

- Estimated coefficients are the same as the Poisson model
- lacktriangle Just need to get μ and $V(\mu)$ correct
- lacktriangle Easy to use and interpret estimated dispersion $\widehat{\phi}$

Cons: Uses a quasi-likelihood, not a full likelihood. So we don't get

- AIC or BIC (these require log-likelihood)
- Quantile residuals (these require a defined CDF)

Inference with quasi-Poisson models

```
## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -1.30445    0.34161   -3.818    0.000274 *** ## regionMW    0.09754    0.48893    0.199    0.842417 ## regionNE    0.76268    0.42117    1.811    0.074167 . ## regionSE    0.87237    0.42175    2.068    0.042044 * ## regionSW    0.50708    0.50973    0.995    0.323027 ## regionW    0.20934    0.51242    0.409    0.684055 ## regionW    0.20934    0.51242    0.409    0.684055
```

How can we test whether there is a difference between crime rates for Western and Central schools?

t-tests for single coefficients

t-tests for single coefficients
$$\frac{\beta_{s} - \beta_{s}^{(0)}}{\sqrt{\beta_{s}}} \approx N(0, 1) \qquad SE(\beta_{s}) = Standarderror$$
using Poissen
$$t = \frac{\beta_{s} - \beta_{s}^{(0)}}{\sqrt{\beta_{s}}} = \frac{\beta_{s} - \beta_{s}^{(0)}}{\sqrt{\delta_{s}}} = \frac{\beta_{s} - \beta_{s}^{(0)}}{\sqrt{\delta_{s}}} = \frac{1}{\sqrt{\delta_{s}}} \approx t_{n-(u+1)}$$

t- distribution

Let
$$Z \sim N(0,1)$$
, $V \sim X_0^2$ be independent.

Then $Z \sim t_0$

Then $Z \sim t_0$
 $Z \sim t_0$
 $Z \sim t_0$
 $Z \sim t_0$

Then
$$\sqrt{1/3}$$
 $\sqrt{2}$ $\sqrt{2}$

Inference with quasi-Poisson models

How can we test whether there is any relationship between Region and crime rates?

F-tests for multiple coefficients

$$D^*(y, \hat{M}) = D(y, \hat{M}) \qquad \approx \chi^2_{n-(u+1)}$$

$$LRT: D^*(y, \hat{M} reduced) - D^*(y, \hat{M} fun) \approx \chi^2_{2} \qquad \text{g=# parametrics}$$
This works when \emptyset is known...

$$Test statistic: F = \frac{\left(D(y, \hat{M} reduced) - D(y, \hat{M} fun)\right)}{\left(D(y, \hat{M} fun)\right)} \frac{2}{\sqrt{2}} \approx \frac{2}{\sqrt{2}}$$

$$Motivation: Let S_1 \sim \chi^2_{3_1}, S_2 \sim \chi^2_{3_2} \qquad be independent$$

$$Then F = \frac{S_1/d_1}{S_2/d_2} \sim F_{3_1, 3_2}$$

$$Let S_1 = D^*(y, \hat{M} red) - D^*(y, \hat{M} fun) \approx \chi^2_{2}$$

$$Let S_1 = D^*(y, \hat{M} red) - D^*(y, \hat{M} fun) \approx \chi^2_{2}$$

$$S_2 = \frac{S_1/d_1}{\sqrt{2}} \approx \chi^2_{n-(u+1)} = \frac{S_1/d_1}{\sqrt{2}}$$

$$S_2 = \frac{S_1/d_1}{\sqrt{2}} \approx \chi^2_{n-(u+1)} = \frac{S_1/d_1}{\sqrt{2}}$$

$$S_2 = \frac{S_1/d_1}{\sqrt{2}} \approx \chi^2_{n-(u+1)} = \frac{S_1/d_1}{\sqrt{2}}$$

$$S_1 = \frac{S_1/d_1}{\sqrt{2}} \approx \chi^2_{n-(u+1)} = \frac{S_1/d_1}{\sqrt{2}}$$

F-test example

F-test example

```
m1 <- glm(nv ~ region, offset = log(enroll1000),
           data = crimes, family = quasipoisson)
m0 \leftarrow glm(nv \sim 1, offset = log(enroll1000),
           data = crimes, family = quasipoisson)
deviance_change <- m0$deviance - m1$deviance</pre>
df_numerator <- m0$df.residual - m1$df.residual</pre>
numerator <- deviance_change/df_numerator</pre>
denominator <- m1$deviance/m1$df.residual</pre>
numerator/denominator
```

[1] 2.003533

```
pf(numerator/denominator, df_numerator,
    m1$df.residual, lower.tail=F)
```

An alternative to quasi-Poisson

Poisson:

- + Mean = λ_i
- + Variance = λ_i

quasi-Poisson:

- \bullet Mean = λ_i
- + Variance = $\phi \lambda_i$
- Variance is a linear function of the mean

What if we want variance to depend on the mean in a different way?

The negative binomial distribution

If $Y_i \sim NB(r,p)$, then Y_i takes values $y=0,1,2,3,\ldots$ with probabilities

$$P(Y_i=y)=rac{\Gamma(y+r)}{\Gamma(y+1)\Gamma(r)}(1-p)^rp^y$$

- $+ r > 0, p \in [0,1]$
- $lacksquare \mathbb{E}[Y_i] = rac{pr}{1-p} = \mu$
- $extbf{Var}(Y_i) = rac{pr}{(1-p)^2} = \mu + rac{\mu^2}{r}$
- Variance is a quadratic function of the mean

Mean and variance for a negative binomial variable

If $Y_i \sim NB(r,p)$, then

$$lacksquare \mathbb{E}[Y_i] = rac{pr}{1-p} = \mu$$

$$lacksquar Var(Y_i) = rac{pr}{(1-p)^2} = \mu + rac{\mu^2}{r}$$

How is r related to overdispersion?

Negative binomial regression

$$Y_i \sim NB(r,~p_i)$$

$$\log(\mu_i) = eta^T X_i$$

$$m{+} \;\; \mu_i = rac{p_i r}{1-p_i}$$

- + Note that r is the same for all i
- Note that just like in Poisson regression, we model the average count
 - lacktriangle Interpretation of etas is the same as in Poisson regression

In R

 $\hat{r} = 1.066$

```
library (MASS)
m3 <- glm.nb(nv ~ region + offset(log(enroll1000)),
         data = crimes)
             Estimate Std. Error z value Pr(>|z|)
##
                        0.28137 -4.741 2.12e-06 ***
##
  (Intercept) -1.33404
  regionMW 0.14230 0.44824 0.317 0.75089
## regionNE 0.94567 0.36641 2.581 0.00985 **
## regionSE 1.18534 0.39736 2.983 0.00285 **
## regionSW 0.33449 0.45666 0.732 0.46387
## regionW
          0.06466 0.47628 0.136 0.89201
##
## (Dispersion parameter for Negative Binomial(1.0662) fami
```