
Quasi-Poisson models
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Recap: Quasi-Poisson regression

A model for overdispersed Poisson-like counts, using an estimated

dispersion parameter , is called a quasi-Poisson model.
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Recap: Poisson vs. quasi-Poisson

Poisson:

Quasi-Poisson:
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Quasi-likelihood models
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Poisson : Vcu) = µ Varcyi)=µi

Quasi - Poisson : Vcu) =M Narai) = 0mi



Pros and cons of quasi-Poisson

Pros:

Estimated coef�cients are the same as the Poisson model

Just need to get  and  correct

Easy to use and interpret estimated dispersion 

Cons: Uses a quasi-likelihood, not a full likelihood. So we don't get

AIC or BIC (these require log-likelihood)

Quantile residuals (these require a de�ned CDF)
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Inference with quasi-Poisson models

How can we test whether there is a difference between crime
rates for Western and Central schools?
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-tests for single coef�cients
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Inference with quasi-Poisson models

How can we test whether there is any relationship between
Region and crime rates?
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-tests for multiple coef�cients
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-test example
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-test example
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An alternative to quasi-Poisson

Poisson:

Mean = 

Variance = 

quasi-Poisson:

Mean = 

Variance = 

Variance is a linear function of the mean

What if we want variance to depend on the mean in a different
way?
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The negative binomial distribution

If , then  takes values  with
probabilities

, 

Variance is a quadratic function of the mean
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Mean and variance for a negative binomial
variable

If , then

How is  related to overdispersion?
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Negative binomial regression

Note that  is the same for all 

Note that just like in Poisson regression, we model the average
count

Interpretation of s is the same as in Poisson regression
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In R
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