Fitting logistic regression models

Announcements

- Office hour times:
 - Monday 3 4 (sign up for 15-minute slots)
 - Wednesday 11 12 (15-minute slots)
 - Wednesday 12 12:45 (drop-in)
 - Thursday 1 2 (drop-in)
- Homework 1 and Challenge Assignment 1 released on course website

Course components

- Regular homework assignments
 - Practice material from class
- Challenge assignments
 - Learn additional material related to course
- 2 take-home exams
 - Demonstrate knowledge of theory and methodology
 - No final exam!
- 2 projects
 - Apply material to real data and real research questions

Assigning grades: specifications grading

To get a **B** in the course:

- Receive credit for at least 5 homework assignments
- Master one project
- Master at least 80% of the questions on both exams

To get an **A** in the course:

- Receive credit for at least 5 homework assignments
- Master both projects
- Master at least 80% of the questions on both exams
- Master at least 2 challenge assignments

Late work and resubmissions

- → You get a bank of 5 extension days. You can use 1--2 days on any assignment, exam, or project.
- No other late work will be accepted (except in extenuating circumstances!)
- "Not yet mastered" challenge questions, exams, and projects may be resubmitted once

Recap: three ways of fitting linear regression models

- $\begin{array}{c} \bullet \quad \text{Minimize SSE, via derivatives of} \\ \sum_{i=1}^{n} (Y_i \beta_0 \beta_1 X_{i,1} \dots \beta_k X_{i,k})^2 \\ \bullet \quad \text{Minimize } ||Y \widehat{Y}|| \text{ (equivalent to minimizing SSE)} \\ \bullet \quad \text{Maximize Piler III.} \end{array}$

 - Maximize likelihood (for normal data, equivalent to minimizing SSE) appropriate but change distribution

Which of these three methods, if any, is appropriate for fitting a logistic regression model? Do any changes need to be made for the logistic regression setting?

Discuss with your neighbor for 2--3 minutes.

Maximum likelihood for logistic regression

$$Y_i \sim Bernoulli(p_i)$$

$$\log\left(rac{p_i}{1-p_i}
ight) = eta_0 + eta_1 X_{i,1} + \dots + eta_k X_{i,k}$$

Suppose we observe independent samples
$$(X_1,Y_1),\ldots,(X_n,Y_n).$$
 Write down the likelihood function
$$L(\beta)=\prod_{i=1}^n f(Y_i;\beta)$$

for the logistic regression problem. Take 2--3 minutes, then we will discuss as a class.

Maximum likelihood for logistic regression
$$L(\beta) = \prod_{i=1}^{n} f(\lambda_i, \beta) = \prod_{i=1}^{n} \rho_i^{*i} (1-\rho_i)^{*i-1}$$

$$= \prod_{i=1}^{n} \left\{ \left(\underbrace{e^{\beta_0 + \beta_1 \chi_{i+1} + \dots + \beta_n \chi_{i+1}}}_{1+e^{\beta_0 + \beta_1 \chi_{i+1} + \dots + \beta_n \chi_{i+1}}} \right) \left(\underbrace{-\frac{1}{1+e^{\beta_0 + \beta_1 \chi_{i+1} + \dots + \beta_n \chi_{i+1}}}_{1+e^{\beta_0 + \beta_1 \chi_{i+1} + \dots + \beta_n \chi_{i+1}}} \right) \left(\underbrace{-\frac{1}{1+e^{\beta_0 + \beta_1 \chi_{i+1} + \dots + \beta_n \chi_{i+1}}}_{1+e^{\beta_0 + \beta_1 \chi_{i+1} + \dots + \beta_n \chi_{i+1}}} \right)$$

I want to choose β to maximize $L(\beta)$. What are the usual steps

7) Take log:
$$L(\beta) = \log L(\beta)$$

2) $\frac{\partial L(\beta)}{\partial \beta_0}$ set O , $\frac{\partial L(\beta)}{\partial \beta_1}$ set O , ..., $\frac{\partial L(\beta)}{\partial \beta_1}$ set O

Initial attempt at maximizing likelihood

Iterative methods for maximizing likelihood

1) Start w/ initial gress $\beta^{(c)}$ 2) Update to $\beta^{(l)}$, union is closed to the solution
3) Herate. 1000: unct do weiterate?

Motivation: $U(B) = \frac{2l(B)}{2B} = \frac{2l(B)}{2B}$ Score Function $\frac{2l(B)}{2B}$ Score Function $\frac{2l(B)}{2B}$

to find B* such that U(B*) = 0 want

guess B(o) want B* st U(B*) = 0 Firstorder Taylor expansion around 30) $U(B^*)$ $\approx U(B^{(0)}) + \frac{2 U(B^{(0)})}{2 B^{(0)}} (B^* - B^{(0)})$ $= 2 u(3^{(0)}) + 2 u(3^{(0)}) (3^{*} - 3^{(0)}) \approx 0$ $= 3 3^{(0)} - (3^{(0)})^{-1} u(3^{(0)})$ $= 3 3^{(0)} - (3^{(0)})^{-1} u(3^{(0)})$ Herative procedure; 1) Initial gress $\beta^{(0)}$ 2) Update: $\Gamma \rightarrow \Gamma \uparrow \uparrow$: $\beta^{(r+1)} = \beta^{(r)} - \left(\frac{\partial u(\beta^{(r)})}{\partial \beta^{(r)}}\right)^{1} u(\beta^{(r)})$ 3) Stop when $\beta^{(r)} \approx \beta^{(r+1)}$ (you get to define now close)

Taylor expansion of
$$f(x)$$
 around χ_0

First arder: $f(x) \approx f(x_0) + f'(x_0)(x-x_0)$

$$f(x_0) = f(x_0) + f'(x_0) + f'(x_0)(x-x_0)$$

$$f(x_0) = f(x_0) + f'(x_0) + f'(x_0)(x-x_0)$$

$$f(x_0) = f(x_0) + f'(x_0) + f'(x_0)(x-x_0)$$

$$\frac{\partial U(\beta)}{\partial \beta} = \frac{\partial^2 U(\beta)}{\partial \beta^2} = \frac{\partial^2 U(\beta)}$$

E[J(B)] < Fisher information matrix

Fisher scoring

Fisher scoring for logistic regression

Practice question: Fisher scoring

Suppose that
$$\log\!\left(rac{p_i}{1-p_i}
ight)=eta_0+eta_1X_i$$
 , and we have

$$eta^{(r)} = egin{bmatrix} -3.1 \ 0.9 \end{bmatrix}, \quad U(eta^{(r)}) = egin{bmatrix} 9.16 \ 31.91 \end{bmatrix},$$

$$\mathcal{I}(eta^{(r)}) = egin{bmatrix} 17.834 & 53.218 \ 53.218 & 180.718 \end{bmatrix}$$

Use the Fisher scoring algorithm to calculate $eta^{(r+1)}$ (you may use R or a calculator, you do not need to do the matrix arithmetic by hand). Take ~ 5 minutes, then we will discuss.

Alternative to Fisher scoring: gradient ascent

$$Y_i \sim Bernoulli(p_i)$$

$$\logigg(rac{p_i}{1-p_i}igg)=eta_0+eta_1X_{i,1}+\cdots+eta_kX_{i,k}$$

Choose $\beta = (\beta_0, \dots, \beta_k)^T$ to maximize $L(\beta)$.

Gradient ascent:

Motivation for gradient ascent: walking uphill

Practice question: gradient ascent

Suppose that
$$\log\!\left(rac{p_i}{1-p_i}
ight)=eta_0+eta_1X_i$$
 , and we have

$$eta^{(r)} = egin{bmatrix} -3.1 \ 0.9 \end{bmatrix}, \quad U(eta^{(r)}) = egin{bmatrix} 9.16 \ 31.91 \end{bmatrix}$$

- Use gradient ascent with a learning rate (aka step size) of $\gamma=0.01$ to calculate $\beta^{(r+1)}$.
- The actual maximum likelihood estimate is $\widehat{\beta}=(-3.360,1.174)$. Does one iteration of gradient ascent or Fisher scoring get us closer to the optimal $\widehat{\beta}$?
- Discuss in pairs for 2--3 minutes.